

# Stand Treelist Imputation



Jacob Beard  
[jacob.beard@dnr.wa.gov](mailto:jacob.beard@dnr.wa.gov)

Kate McBurney, Jeff Ricklefs, Peter Gould, Jacob Strunk, et al.

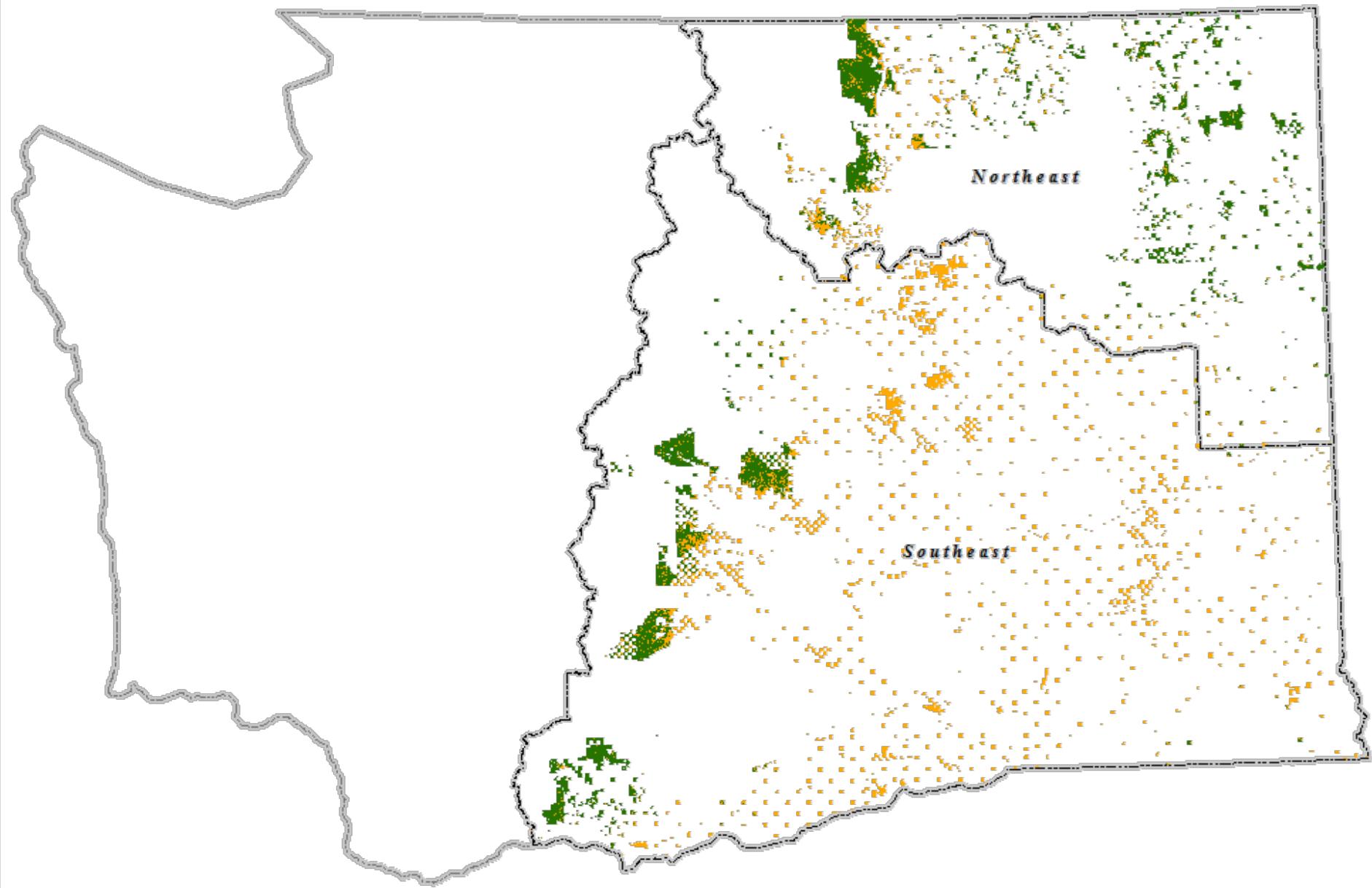
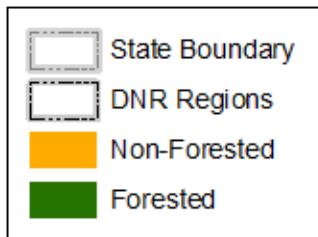
# Sustainable Harvest Calculation | WA

Generating a perpetual supply of revenue on state trust lands for trust beneficiaries requires responsible management with an emphasis on **long-term sustainability**. A major component of DNR's approach to sustainable management is calculation of a sustainable harvest level, which is **the volume of timber to be scheduled for sale during a planning decade** according to applicable laws, policies, and procedures [\(RCW 79.10.300\)\(5\)](#).

**DNR is required to set a sustainable harvest level by Washington state law.** Specifically, DNR must periodically adjust acreages designated for inclusion in the sustained yield management program and calculate a sustainable harvest level [\(RCW 79.10.320\)](#). Sustained yield means harvesting on a continual basis without major prolonged curtailment or cessation of harvest [\(RCW 79.10.310\)](#). The **sustainable harvest level is a policy decision** that requires approval from the [Board of Natural Resources](#).

**[S]eparate sustainable harvest level[s] for forested state trust lands located east and west of the Cascade Crest because growing conditions and management strategies [differ].**

<https://www.dnr.wa.gov/shc>



# DNR Managed EWA Lands

## DNR Managed Acres

---

|              |                  |
|--------------|------------------|
| Forested     | 756,000          |
| Non-Forested | 803,000          |
| <b>Total</b> | <b>1,559,000</b> |

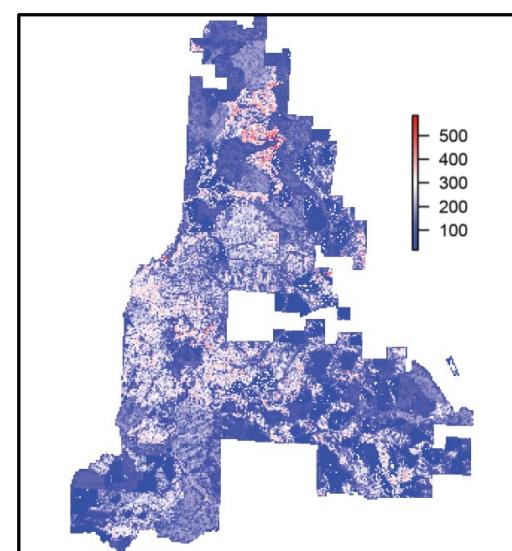
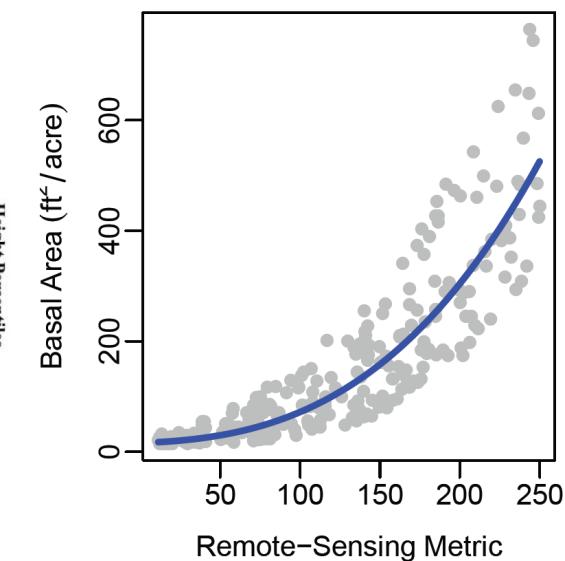
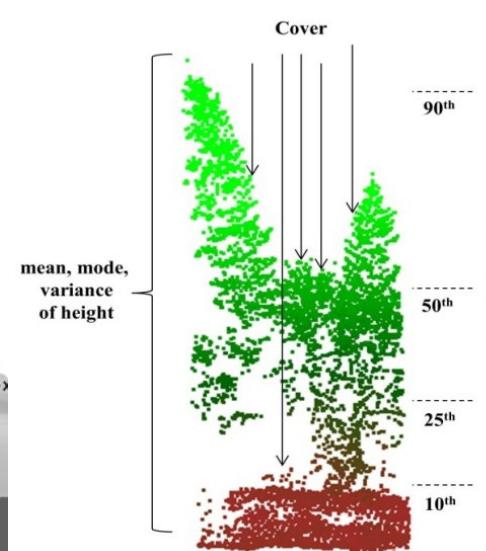
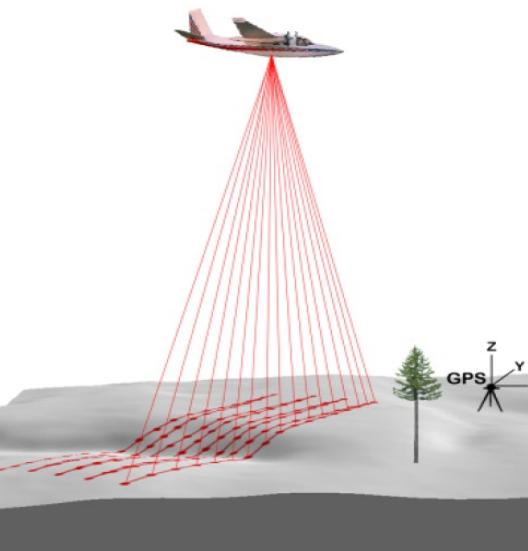
---



# FVS Growth Modeling

[Essential FVS: \(usda.gov\)](http://usda.gov)

**Variables that must be recorded for all trees:**





- Plot Identifier
- Species
- Diameter at Breast Height (DBH)

Other variables, however, serve to better describe unique site and tree characteristics and will improve the resolution of the projection.

**The model will accommodate up to 3000 individual tree records (per stand).**



# Remote Sensed - Forest Resource Inventory System (RS-FRIS)



Plot type 3:

Plot type 2:

Plot type 1:

### Plot type 1:

|              |                                             |
|--------------|---------------------------------------------|
| Radius       | 7.4 feet                                    |
| Area         | 1/250 <sup>th</sup> ac                      |
| Sample Trees | Live trees > 1 foot tall and < 2 inches dbh |

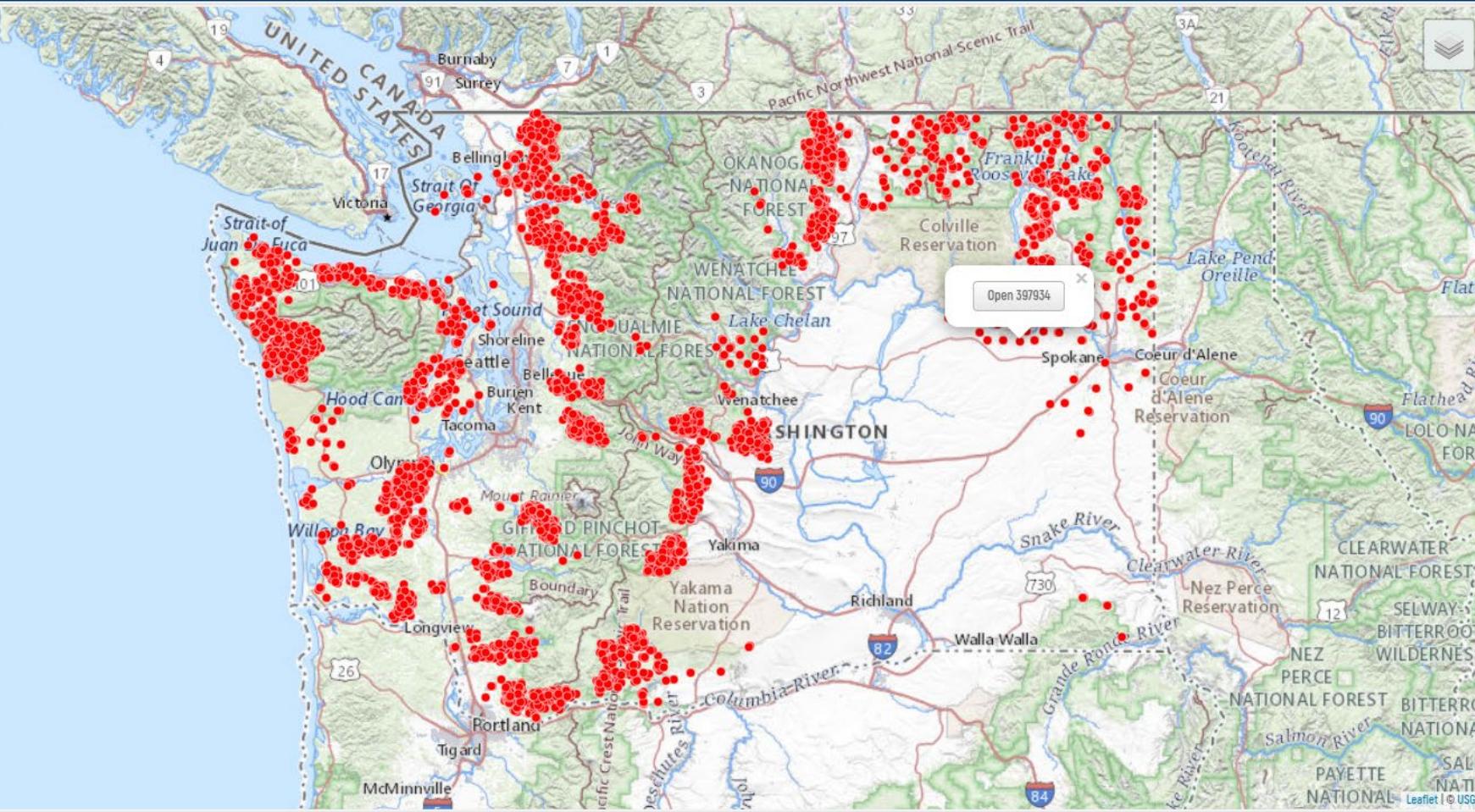
Plot type 3:

Plot type 2:

Plot type 1:

### Plot type 3:

|              |                                           |
|--------------|-------------------------------------------|
| Radius       | 37.2 feet                                 |
| Area         | 1/10 <sup>th</sup> ac                     |
| Sample Trees | Live and dead trees $\geq$ 5.5 inches dbh |


Plot type 3:

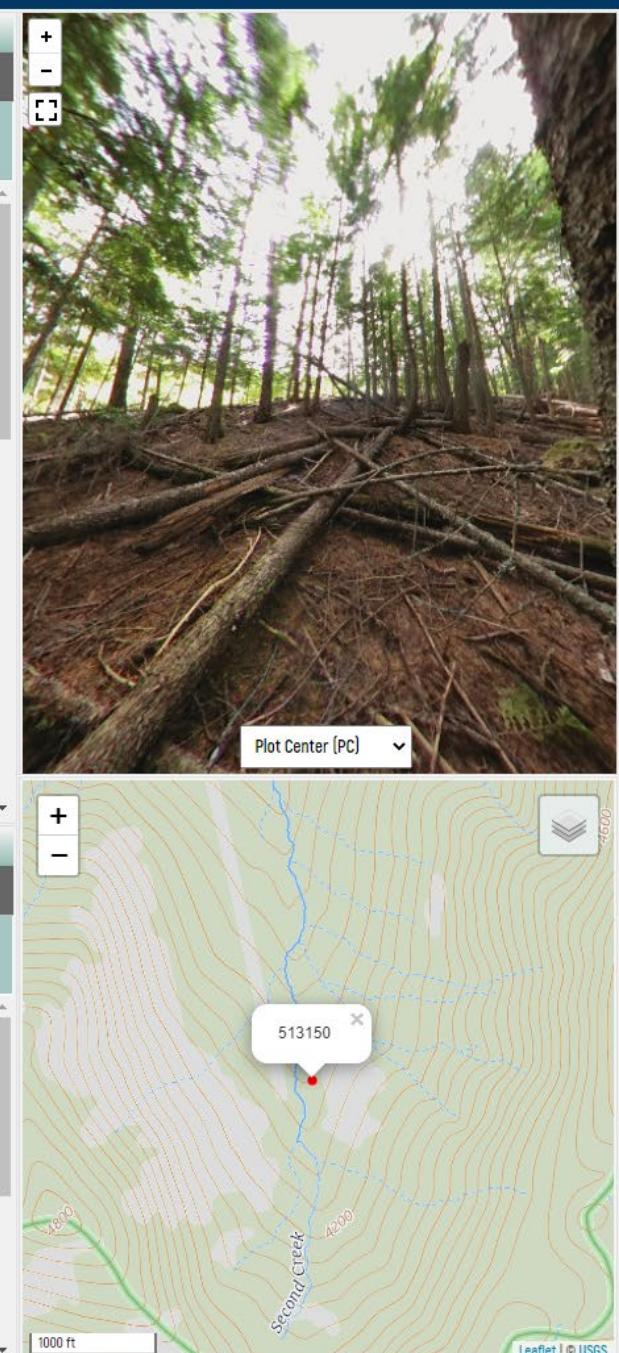
Plot type 2:

Plot type 1:

### Plot type 2:

|              |                                                     |
|--------------|-----------------------------------------------------|
| Radius       | 18.6 feet                                           |
| Area         | 1/40 <sup>th</sup> ac                               |
| Sample Trees | Live trees $\geq$ 2 inches dbh and < 5.5 inches dbh |




30 mi

 
Q: [Multiple Fields]
 Search
Open Plot Page

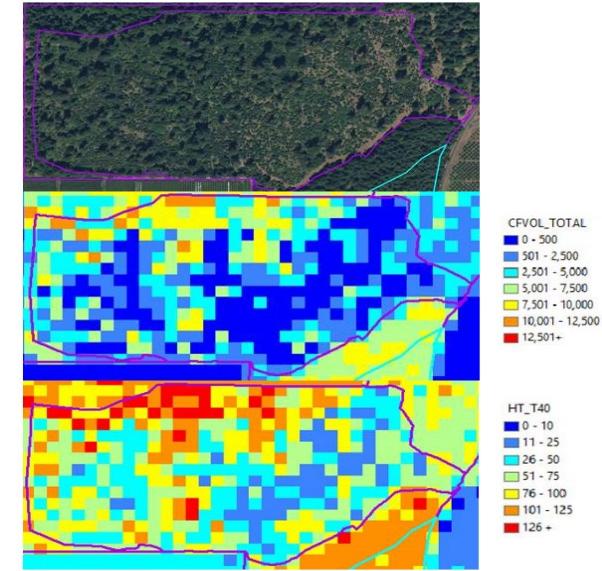
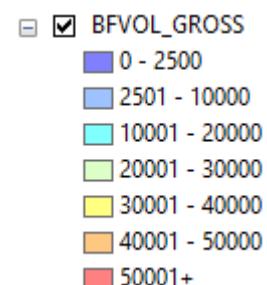
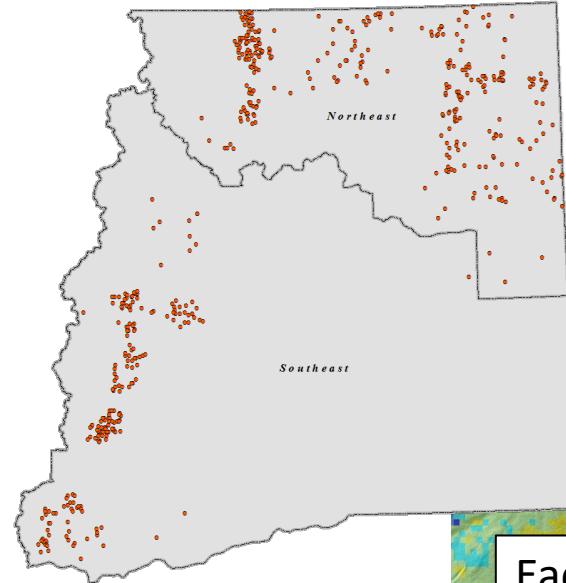
## RS-FRIS Plots

| Date Measured | Plot Name | Region          | District | Species (Primary) | BA (Basal Area) | Height: Largest Value | QMD (Quadratic Mean Diamet... | DBH: Largest Live | TPA (Trees per Acre) |
|---------------|-----------|-----------------|----------|-------------------|-----------------|-----------------------|-------------------------------|-------------------|----------------------|
| 2018/08/29    | 116465    | Pacific Cascade | Yacolt   | DF                | 192.7           | 127                   | 16.5                          | 23.7              | 130.3                |
| 2018/08/28    | 397934    | Northeast       | Arcadia  | PP                | 93.4            | 51                    | 5.2                           | 11.3              | 621.1                |
| 2018/08/28    | 113573    | Pacific Cascade | Yacolt   | DF                | 293.1           | 136                   | 8.1                           | 32.9              | 824.2                |
| 2018/08/28    | 114535    | Pacific Cascade | Yacolt   | DF                | 160.7           | 85                    | 8.3                           | 15.2              | 430.8                |
| 2018/08/28    | 127988    | Pacific Cascade | Yacolt   | DF                | 69.2            | 76                    | 12.6                          | 16.3              | 80.2                 |
| 2018/08/28    | 127008    | Pacific Cascade | Yacolt   | DF                | 98.3            | 77.6                  | 7.2                           | 12.7              | 350.7                |
| 2018/08/28    | 129887    | Pacific Cascade | Yacolt   | DF                | 277.9           | 130                   | 5.3                           | 29.8              | 1847.1               |
| 2018/08/28    | 133728    | Pacific Cascade | Yacolt   | DF                | 1.4             | 4.7                   | 0.7                           | 1                 | 506.4                |
| 2018/08/28    | 128956    | Pacific Cascade | Yacolt   | DF                | 193.7           | 89.1                  | 3.7                           | 16.6              | 2579.5               |

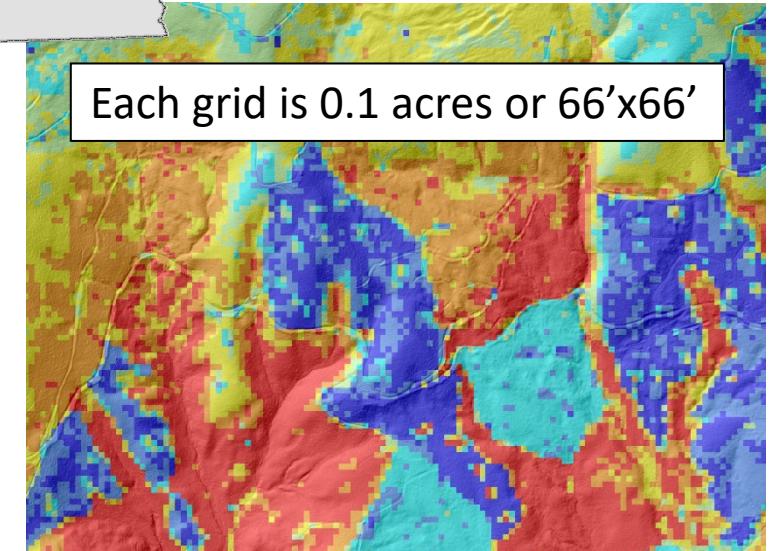
| Plot Metrics                     |                    | Tree Records  |    |     |    |         |       |              |              |         |       |         |         |         |                  |      |     |      |                                                                                                                    |      |    |      |      |      |       |
|----------------------------------|--------------------|---------------|----|-----|----|---------|-------|--------------|--------------|---------|-------|---------|---------|---------|------------------|------|-----|------|--------------------------------------------------------------------------------------------------------------------|------|----|------|------|------|-------|
| Field                            | Value              | Q: All Fields |    |     |    | N Trees |       | Measurements |              | Volumes |       | BioCarb |         | Damages |                  | Note |     |      |                                                                                                                    |      |    |      |      |      |       |
|                                  |                    | N             | PT | Sts | Sp | N Trees |       |              | Measurements |         |       | Volumes |         |         | Biomass & Carbon |      |     |      |                                                                                                                    |      |    |      |      |      |       |
|                                  |                    |               |    |     |    | Count   | XFAC  | TPA          | DBH          | Ht      | HLC   | CR      | CFgt... | CFgm    | CFnm             | BFg  | BFn | CFgb | LbAB                                                                                                               | LbAC |    |      |      |      |       |
| Plot Name                        | 513150             |               |    |     |    | 1       | 10.02 | 10.02        | 12.5         | 94      | 37    | 61      | 34      | 30      | 30               | 150  | 30  | 34   | 1378                                                                                                               | 689  |    |      |      |      |       |
| Sample Date                      | 2020-08-13 12:2... |               |    |     |    | 2       | 1     | DF           | 1            | 10.02   | 10.02 | 15.6    | 99      | 63      | 36               | 48   | 44  | 44   | 220                                                                                                                | 44   | 45 | 1911 | 955  |      |       |
| X                                | 2444814.2          |               |    |     |    | 3       | 2     | 1            | DF           | 1       | 10.02 | 10.02   | 7.3     | 90      | 41               | 54   | 11  | 8    | Merchantable cubic-foot gross volume. This predicted value does not account for defect. Units = cubic feet / acre. |      |    |      |      |      |       |
| Y                                | 1198933.3          |               |    |     |    | 4       | 3     | 1            | WL           | 1       | 10.02 | 10.02   | 17.6    | 115     | 72               | 37   | 68  | 63   |                                                                                                                    |      |    |      |      |      |       |
| Elevation                        | 3973               |               |    |     |    | 5       | 3     | 0            | DF           | 1       | 10.02 | 10.02   | 16.5    | 20      | 0                | 11   | 8   | 6    | 10                                                                                                                 | 6    | 9  | 373  | 187  | dead |       |
| + Species (Primary)              | DF                 |               |    |     |    | 6       | 3     | 1            | WL           | 1       | 10.02 | 10.02   | 15      | 120     | 44               | 63   | 54  | 50   | 50                                                                                                                 | 250  | 50 | 50   | 2127 | 1063 |       |
| + BA (Basal Area)                | 329.6              |               |    |     |    | 7       | 3     | 1            | RC           | 1       | 10.02 | 10.02   | 6.2     | 35      | 18               | 49   | 3   | 2    | 2                                                                                                                  | 10   | 2  | 2    | 74   | 37   |       |
| + Volume: Board Foot [Gross]     | 51703.2            |               |    |     |    | 8       | 3     | 1            | WL           | 1       | 10.02 | 10.02   | 9.7     | 87      | 46               | 47   | 17  | 15   | 15                                                                                                                 | 80   | 15 | 15   | 667  | 334  |       |
| + Canopy: Layer Count            | 1                  |               |    |     |    | 9       | 3     | 1            | RC           | 1       | 10.02 | 10.02   | 5.7     | 32      | 14               | 56   | 3   | 2    | 2                                                                                                                  | 53   | 2  | 53   | 27   |      |       |
| + Height: Largest Value          | 121                |               |    |     |    | 10      | 3     | 1            | WL           | 1       | 10.02 | 10.02   | 15.3    | 121     | 82               | 32   | 56  | 52   | 52                                                                                                                 | 270  | 52 | 53   | 2224 | 1112 |       |
| + QMD (Quadratic Mean Diamet...) | 9.5                |               |    |     |    | 11      | 2     | 1            | WH           | 1       | 40.07 | 40.07   | 3       | 17      | 10               | 41   | 0   | 0    | 18                                                                                                                 | 18   | 9  |      |      |      |       |
| + RD (Relative Density)          | 106.9              |               |    |     |    | 12      | 3     | 1            | RC           | 1       | 10.02 | 10.02   | 10.9    | 60      | 13               | 78   | 16  | 13   | 13                                                                                                                 | 60   | 13 | 15   | 423  | 212  |       |
| + SDI: Sum (Stand Density Index) | 561.7              |               |    |     |    | 13      | 3     | 0            | DF           | 1       | 10.02 | 10.02   | 6.4     | 52      | 0                | 5    | 3   | 3    | 3                                                                                                                  | 20   | 3  | 4    | 158  | 79   | dead  |
| + Snags: DBH > 20" (Per Acre)    | 0                  |               |    |     |    | 14      | 3     | 1            | WL           | 1       | 10.02 | 10.02   | 13.4    | 109     | 75               | 31   | 39  | 36   | 36                                                                                                                 | 180  | 36 | 37   | 1094 | 547  | conks |
| + TPA [Trees per Acre]           | 671.3              |               |    |     |    | 15      | 3     | 1            | DF           | 1       | 10.02 | 10.02   | 15.9    | 110     | 72               | 35   | 55  | 51   | 51                                                                                                                 | 270  | 51 | 52   | 2216 | 1108 |       |
|                                  |                    |               |    |     |    | 16      | 3     | 1            | WH           | 1       | 10.02 | 10.02   | 8.8     | 63      | 24               | 62   | 11  | 9    | 9                                                                                                                  | 50   | 9  | 11   | 447  | 224  |       |
|                                  |                    |               |    |     |    | 17      | 3     | 0            | DF           | 1       | 10.02 | 10.02   | 8.8     | 25      | 0                | 4    | 3   | 3    | 10                                                                                                                 | 3    | 3  | 147  | 74   | dead |       |
|                                  |                    |               |    |     |    | 18      | 3     | 0            | DF           | 1       | 10.02 | 10.02   | 10.8    | 77      | 0                | 19   | 16  | 16   | 16                                                                                                                 | 80   | 16 | 17   | 742  | 371  | dead  |
|                                  |                    |               |    |     |    | 19      | 3     | 1            | RC           | 1       | 10.02 | 10.02   | 7.5     | 41      | 13               | 68   | 6   | 4    | 4                                                                                                                  | 20   | 4  | 5    | 138  | 69   |       |
|                                  |                    |               |    |     |    | 20      | 3     | 1            | WH           | 1       | 10.02 | 10.02   | 6.1     | 56      | 23               | 59   | 5   | 3    | 3                                                                                                                  | 10   | 3  | 4    | 162  | 81   |       |



# Components involved:




## Tree Data from RS-FRIS Plots: Species, DBH, Height

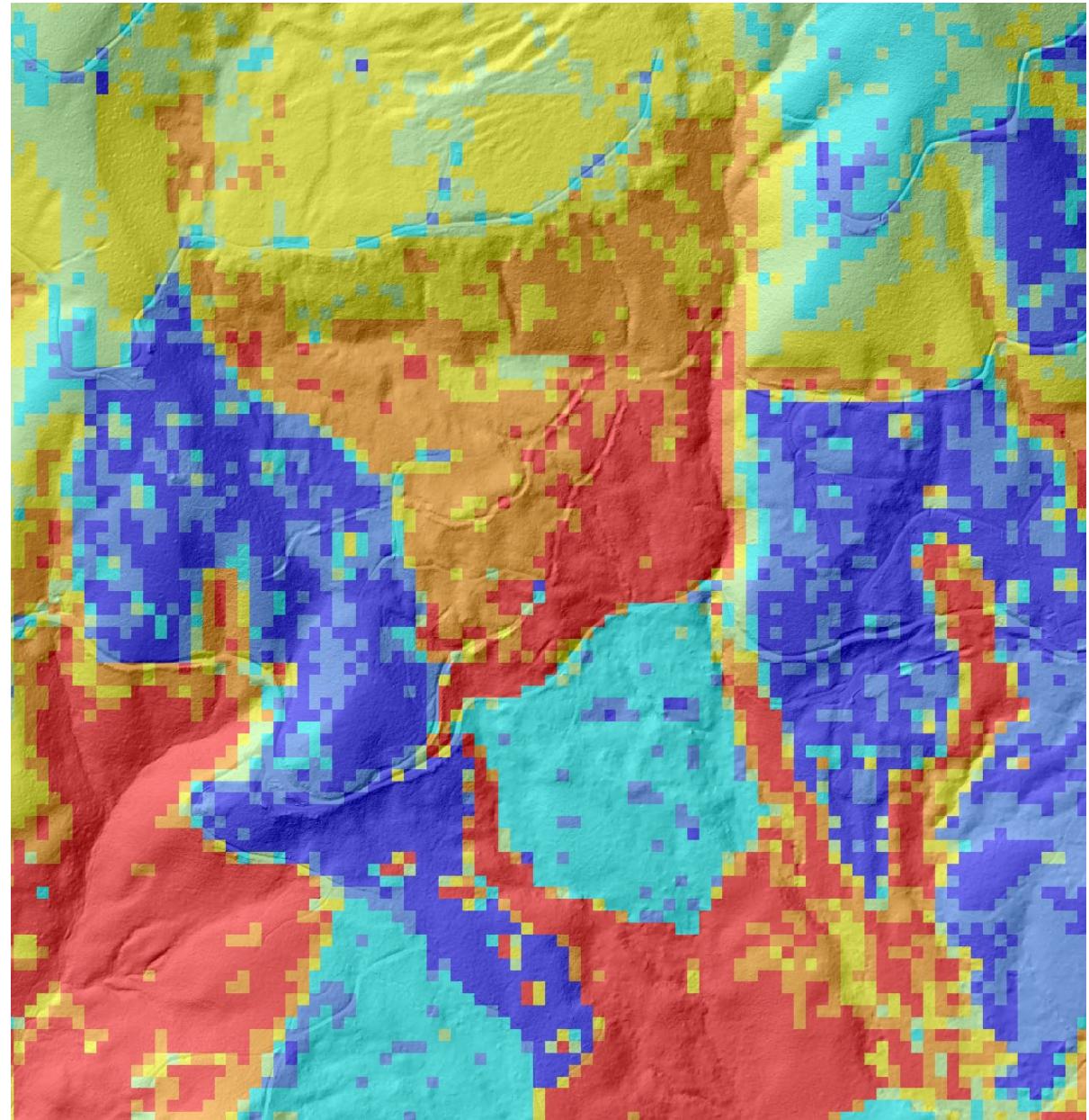
## RS-FRIS Raster Variables


1. Total Cubic Volume
2. Heights of the Largest (DBH) Trees
3. Percent Tree Cover

**These three raster variables have the least amount of variation when compared to traditional cruise data.**

Low Estimate → High Estimate




Each grid is 0.1 acres or 66'x66'



# Stand Treelist Imputation

*Why? FVS needs lists of trees to represent stands.*

- 1) Gather Data
  - a) Normalize RS-FRIS plot data for FVS input
- 2) Group (*raster*) stand-grids into bins, by volume
- 3) Match RS-FRIS plots to stand bins by ecotype
- 4) Impute all stand-grid volume-bins with the ecotype-matched, plot treelists



# Plot <-> Stand-Grid (Bin)

Assigns the best matching RS-FRIS plot to a target stand-grid in terms of having the smallest difference between variables:

- Metrics:
  - Heights (*ht\_t40*)
  - Cover
  - Volume (*cfvol\_total*)
- Climate:
  - Moisture
  - Elevation
  - Temperature

Goal:

Find out what plot treelist is most appropriate for a grid cell.

```
if (eco == 1) { # SAF-ES-LP subalpine
  return (
    abs((x$vol1 - y$meanvol2)*2)
    + abs((x$ht1 - y$meanht2))
    + abs((x$cov1 - y$meancov2))
    + abs((x$elevation1 - y$elevation2)*2)
    + abs((x$aet1 - y$aet2))
    + abs((x$td1 - y$td2))
    + abs((x$mat1 - y$mat2)))
}
else if (eco == 2) { # CMMC
  return (
    abs((x$vol1 - y$meanvol2)*2)
    + abs((x$ht1 - y$meanht2))
    + abs((x$cov1 - y$meancov2))
    + abs((x$elevation1 - y$elevation2))
    + abs((x$aet1 - y$aet2))
    + abs((x$mat1 - y$mat2)))
}
else if (eco == 3) { # WMMC
  return (
    abs((x$vol1 - y$meanvol2)*2)
    + abs((x$ht1 - y$meanht2))
    + abs((x$cov1 - y$meancov2))
    + abs((x$aet1 - y$aet2))
    + abs((x$map1 - y$map2))
    + abs((x$shm1 - y$shm2)))
}
```

# R6 Class: Imputer

```
initialize = function (debug = FALSE, explore = FALSE, run = FALSE) {
  self$debug = debug
  self$explore = explore
  print("Initializing a new instance of the Imputer class.")
  if (run) {
    t1 = sys.time()
    self$.impute(debug, explore)
    t2 = sys.time()
    elapsed = t2 - t1
    print(elapsed)
  }
},
```

```
# Examples of how to call the Imputer R6class written for imputi
#####
# Example 1 ----- Run the parLapply() version --
#####

i1 <- Imputer$new(run = TRUE, debug = FALSE)
  # 'run' argument tells it to use parLapply() with

#####
# Example 2 ----- Run the lapply() version --
#####

i2 <- Imputer$new(run = FALSE, debug = FALSE)
  # 'run' = FALSE allows us to subsequently set make
  # This is done in order to use lapply(), without c

# It is necessary to set 'make_cluster' = FALSE in order to use
i2$make_cluster = FALSE
# The .impute() function runs all of the processes which are par
i2$.impute(i2$debug, i2$explore)
```

```
.impute = function (debug, explore, name_ref=".impute()") {
  t1 = Sys.time()
  if (debug) {
    self$make_cluster = FALSE}
  self$cluster = .fx_set_cluster()
  ptm <- proc.time() # start the clock!
  self$ptm = ptm
  print("Beginning imputation.")
  print(ptm)
  print("Proceeding to query all trees from the database.")
  # aggregates class methods into one function for general use
  self$trees = .step_1_query_trees(is_oracle)
  print(proc.time() - ptm) # stop the clock!
  print("Proceeding to read all stand grids from the R files.")
  self$stands = .step_2_read_stands(n = 7, directory = dir$inputs[1], name_prefix =
  print(proc.time() - ptm) # stop the clock!
  print("Proceeding to group all stand-grids in bins according to volume.")
  self$volumes = .step_3_bin_stand_grids(stands, debug = FALSE)
  print(proc.time() - ptm) # stop the clock!
  print("Proceeding to match RS-FRIS plots to stand-grid volume-bins by ecotype.")
  self$imputations = .step_4_match_ecotype(trees, volumes, cluster, plot_file = "plots_en
  print(proc.time() - ptm) # stop the clock!
  # data exploration
  print("Proceeding to read historic FRIS based numbers from the R file.")
  self$fris = .fx_read_historic_acreage(debug = FALSE, directory = self$dir$fris[1])
  print(proc.time() - ptm) # stop the clock!
  print("Comparing current to historic data via FRIS.")
  if (explore) {
    self$map_eco_1 = .fx_explore_acreages(1, fris, plots1, volumes, debug)
    self$map_eco_2 = .fx_explore_acreages(2, fris, plots2, volumes, debug)
    self$map_eco_3 = .fx_explore_acreages(3, fris, plots3, volumes, debug)
    self$map_eco_4 = .fx_explore_acreages(4, fris, plots4, volumes, debug)
    self$map_eco_5 = .fx_explore_acreages(5, fris, plots5, volumes, debug)
    self$map_eco_6 = .fx_explore_acreages(6, fris, plots6, volumes, debug)
    self$map_eco_7 = .fx_explore_acreages(7, fris, plots7, volumes, debug)
    print(proc.time() - ptm) # stop the clock!
  }
  # imputation processing
  print("Proceeding to impute all stand-grids volume bins with ecotype matched plots.")
  self$impute_map = .step_5_process_imputations(imputations, volumes, debug)
  print(proc.time() - ptm) # stop the clock!
  print("Proceeding to map all stand grids for percent difference in volume.")
  self$plot_map = .step_6_prepare_plot_mapping(impute_map, trees)
  print(proc.time() - ptm) # stop the clock!
  print(sprintf("Imputation succeeded. Returning from %s function.", name_ref))
  t2 = Sys.time()
  elapsed = t2 - t1
  print(elapsed)
  return(plot_map)
},
```

```
#####
# Example 3 ----- Run functions individually -----
#####

# - This is particularly useful if:
#   (A) You only need to debug something specific
#   (B) You require intermediary review of data

i3 <- Imputer$new(debug = FALSE)
  # Note that we set 'debug' = FALSE at the R6Class level above
  # Demonstrated further throughout how you can alternate between using the instantiated value or a new Boolean

  # It is necessary to set 'make_cluster' and call .fx_set_cluster() when 'manually' running functions
i3$make_cluster = TRUE
i3$cluster = i3$.fx_set_cluster()

trees = i3$.step_1_query_trees(
  i3$is_oracle) # 'is_oracle' gets set to FALSE, by default, during instantiation [Imputer$new()]

stands = i3$.step_2_read_stands(
  n = 7,
  directory = i3$dir$inputs[1],
  name_prefix = "vegeco",
  name_suffix = "_dat.environ_standardized_v3rsfris_20210805.rds",
  debug = FALSE)

volumes = i3$.step_3_bin_stand_grids(
  stands,
  debug = FALSE)

imputations = i3$.step_4_match_ecotype(
  trees, volumes, i3$cluster,
  plot_file = "plots.environ_standardized_dom spp_20210805.rds",
  debug = i3$debug)

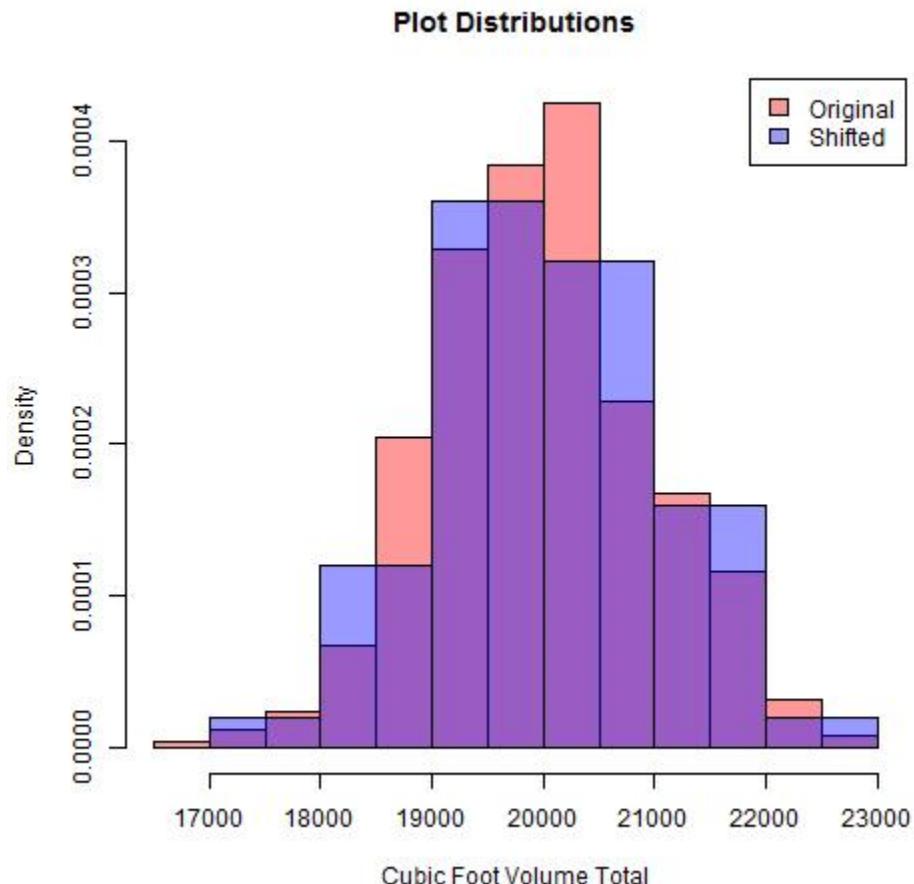
i3$fris = i3$.fx_read_historic_acreage(
  directory = i3$dir$fris[1],
  name_file = "original_fris_ba_speciesv2.rds",
  debug = FALSE)

impute_map = i3$.step_5_process_imputations(
  imputations = imputations,
  volumes = volumes,
  debug = i3$debug)

i3$plot_map = i3$.step_6_prepare_plot_mapping(
  impute_map,
  trees)
```

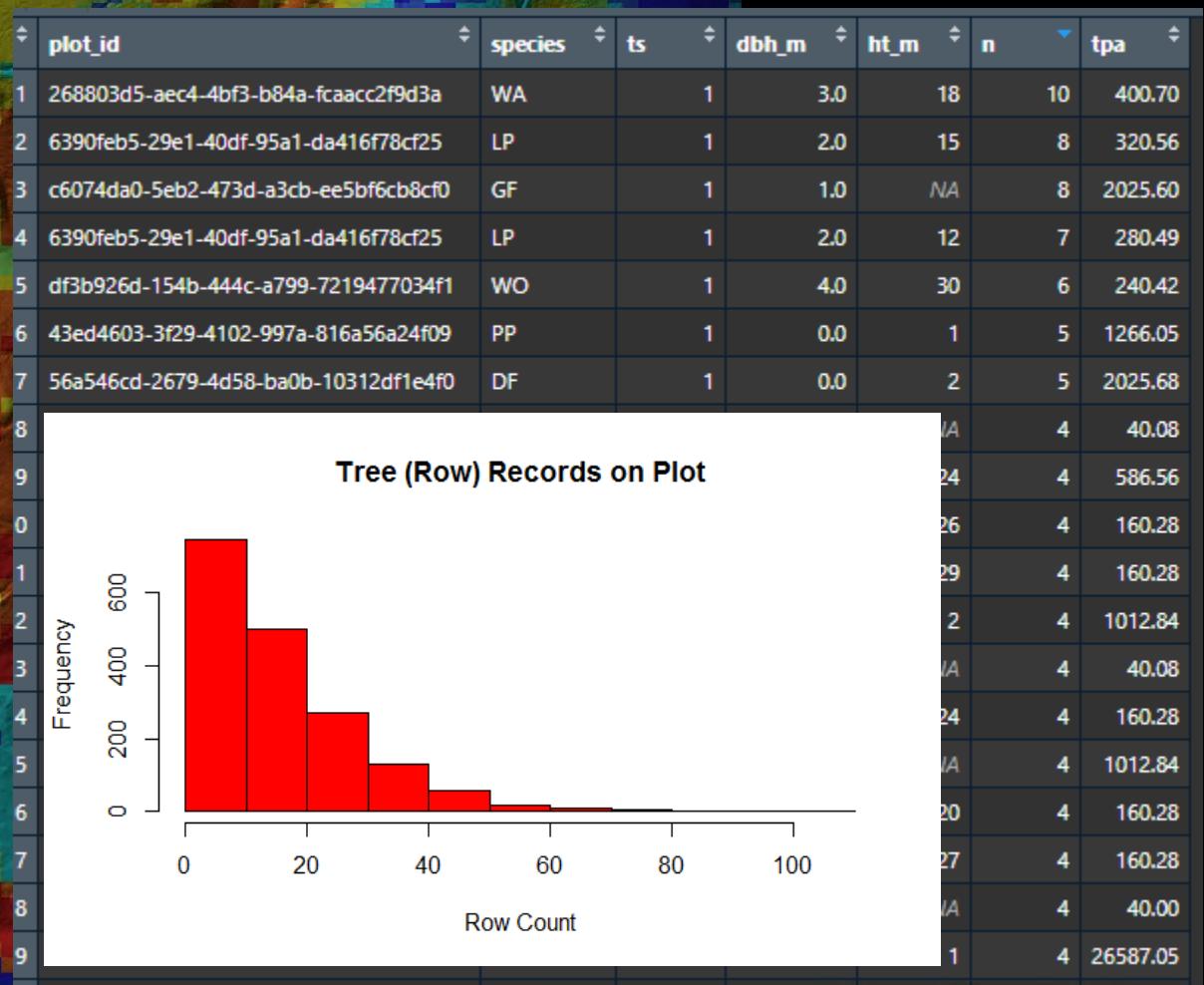
# Preliminary Thoughts:

## parLapply


- Functional programming
- OOP R6 Class

```
.fx_run_parallel = function (ecotype, plots, volumes, cluster,
                                debug      = FALSE) {
  library(foreach)
  library(doParallel)
  env1 = environment()
  if (debug) {
    browser()
  }
  target = .fx_return_bins(ecotype, volumes, debug)
  if (self$make_cluster) {
    # proceed with cluster processing of data
    arguments = c("ecotype", "plots", "debug")
    clusterExport(cluster, arguments, envir = env1)
    registerDoParallel(cluster)
    y_neighbors = parLapply(cl = cluster,
                           X = target,
                           fun = .fx_match_plots_2_stand_grid_bins,
                           ecotype = ecotype,
                           plots = plots,
                           debug = debug)
    y_df = as.data.frame(rbindlist(y_neighbors))
    return (y_df)
  } else {
```

Known Issue:


**Plot to stand-grid(s) matching**

# Distribution thinning and/or shifting around the target metric



# Summarization

```
trees %>% group_by(  
  plot_id,  
  species,  
  status, dbh_m, ht_m  
) %>% summarise(  
  n = n(), # observations  
  tpa = sum(tree_acre)  
)
```



# Thank you for your time!

Jacob Beard

[jacob.beard@dnr.wa.gov](mailto:jacob.beard@dnr.wa.gov)

